Reaction of the hypoxia-selective antitumor agent tirapazamine with a C1'-radical in single-stranded and double-stranded DNA: the drug and its metabolites can serve as surrogates for molecular oxygen in radical-mediated DNA damage reactions.

نویسندگان

  • J T Hwang
  • M M Greenberg
  • T Fuchs
  • K S Gates
چکیده

The compound 3-amino-1,2,4-benzotriazine 1,4-dioxide (1, tirapazamine; also known as SR4233, WIN 59075, and tirazone) is a clinically promising anticancer agent that selectively kills the oxygen-poor (hypoxic) cells found in tumors. When activated by one-electron enzymatic reduction, tirapazamine induces radical-mediated oxidative DNA strand cleavage. Using the ability to generate a single deoxyribose radical at a defined site in an oligonucleotide, we recently provided direct evidence that, in addition to initiating the formation of DNA radicals, tirapazamine can react with these radicals and convert them into base-labile lesions [Daniels et al. (1998) Chem. Res. Toxicol. 11, 1254-1257]. The rate constant for trapping of a C1'-radical in single-stranded DNA by tirapazamine was shown to be approximately 2 x 10(8) M(-1) s(-1), demonstrating that tirapazamine can substitute for molecular oxygen in radical-mediated DNA strand damage reactions. Because reactions of tirapazamine with DNA radicals may play an important role in its ability to damage DNA, we have further characterized the ability of the drug and its metabolites to convert a C1'-DNA radical into a base-labile lesion. We find that tirapazamine reacts with a C1'-radical in double-stranded DNA with a rate constant of 4.6 x 10(6) M(-1) s(-1). The mono-N-oxide (3) stemming from bioreductive metabolism of tirapazamine converts the C1'-radical to an alkaline-labile lesion more effectively than the parent drug. Compound 3 traps a C1'-radical in single-stranded DNA with a rate constant of 4.6 x 10(8) M(-1) s(-1) and in double-stranded DNA with a rate constant of 1.4 x 10(7) M(-)(1) s(-)(1). We have also examined the rate and mechanism of reactions between the C1'-radical and representatives from two known classes of "oxygen mimetic" agents: the nitroxyl radical 2,2,6, 6-tetramethylpiperidin-N-oxyl (4, TEMPO) and the nitroimidazole misonidazole (5). TEMPO traps the C1'-radical in single-stranded DNA (7.2 x 10(7) M(-1) s(-1)) approximately 3 times less effectively than tirapazamine, but 2 times as fast in double-stranded DNA (9.1 x 10(6) M(-1) s(-1)). Misonidazole traps the radical in single- (6. 9 x 10(8) M(-1) s(-1)) and double-stranded DNA (2.9 x 10(7) M(-1) s(-1)) with rate constants that are roughly comparable to those measured for the mono-N-oxide metabolite of tirapazamine. Finally, information regarding the chemical mechanism by which these compounds oxidize a monomeric C1'-nucleoside radical has been provided by product analysis and isotopic labeling studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Effects of Atmospheric Pressure Plasma Jet on the Double-Stranded DNA

Introduction The aim of this study was toinvestigate the sterilization potential of atmospheric pressure plasma jet (APPJ) and interactions of this technology with double-stranded DNA using the polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) techniques. Materials and Methods The plasma jet was produced through a high voltage sinusoidal power supplyusing a mixt...

متن کامل

Initiation of DNA strand cleavage by 1,2,4-benzotriazine 1,4-dioxide antitumor agents: mechanistic insight from studies of 3-methyl-1,2,4-benzotriazine 1,4-dioxide.

The antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ, 1) gains medicinal activity through its ability to selectively damage DNA in the hypoxic cells found inside solid tumors. This occurs via one-electron enzymatic reduction of TPZ to yield an oxygen-sensitive drug radical (2) that leads to oxidatively generated DNA damage under hypoxic conditions. Two possible mechani...

متن کامل

Direct evidence for bimodal DNA damage induced by tirapazamine.

The ability of tirapazamine (1, 3-amino-1,2,4-benzotriazine 1, 4-dioxide, SR4233) to fix DNA radical lesions is demonstrated by studying the reaction between the antitumor drug and an oligonucleotide radical that is independently produced at a defined site within a biopolymer. Using beta-mercaptoethanol as a competitor, it was determined that tirapazamine traps a C1'-nucleotide radical with a r...

متن کامل

DNA strand damage product analysis provides evidence that the tumor cell-specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O(2).

The compound 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ) is a clinically promising anticancer agent that selectively kills the oxygen-poor (hypoxic) cells found in solid tumors. It has long been known that, under hypoxic conditions, TPZ causes DNA strand damage that is initiated by the abstraction of hydrogen atoms from the deoxyribose phosphate backbone of duplex DNA, but exact...

متن کامل

DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).

Tirapazamine is a bioreductively activated DNA-damaging agent that selectively kills the hypoxic cells found in solid tumors. This compound shows clinical promise and is currently being examined in a variety of clinical trials, including several phase III studies. It is well established that DNA is an important cellular target for tirapazamine; however, the structural nature of the DNA damage i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 38 43  شماره 

صفحات  -

تاریخ انتشار 1999